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Abstract: In this paper, we study the generalized unicorns problem on regular
(e, B)-metrics in the form of F' = a¢(s), s = [/a, where a is a Riemannian
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1. Introduction

The unicorns problem is partially solved for an important class of Finsler («, )-
metrics in the form of F' = a¢(s), s = f/«, where «a is a Riemannian metric and
is a 1-form on the manifold M. A Finsler metric F is called Landsberg metric if the
Landsberg curvature L := Lyrda’ ® dz? @ dz* vanishes [7]. A long existing open
problem in Finsler geometry is
Is there any Landsberg metric which is not a Berwald metric ?
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D. Bao [2] named the Landsberg metric that are not Berwald metric the unicorns.
Z. Shen [12] has proved that a regular («, 5)-metric F' = a¢(s), s = B/a, on a
manifold M of dimension n (n > 3) is a Landsberg metric if and only if F is a
Berwald metric, i.e. there is no unicorn in regular («, 5)-metrics on the manifold
M of dimension n > 3. On the other hand, Z. Shen and G. S. Asanov (see [1] and
[11]) have constructed almost regular («, 3)-metrics which are Landsberg metrics
but not Berwald metrics .

A Finsler metric F is called weak Landsberg metric if the mean Landsberg cur-
vature J = Jydz® vanishes, where Jj, := ¢" L. It is clear that every Landsberg
metric is a weak Landsberg metric. In [8], B. Li and Z. Shen have studied weak
Landsberg («, §)-metrics and characterized almost regular weak Landsberg (a, f)-
metrics on an n-dimensional manifold M (n > 3). They have also shown that [§]
there exist almost regular weak Landsberg metrics which are not Landsberg met-
rics in dimension greater than two. At this juncture we have the following quetion:
Is there a reqular weak Landsberg metric that is Berwald metric ?

The weak Landsberg metric that are not Berwald metric are called generalized
unicorns.

In this paper, we mainly study the generalized unicorns problem for regular (o, 3)-
metrics. The main findings of this paper lies in Theorem 4.1 and Theorem 5.3. One
can easily prove the following theorem:

Theorem 1.1. Let F' = a¢(s), s = [/a, be a reqular (o, B)-metric on an n-
dimensional manifold M (n > 3), where « is a Riemannian metric and [ is a
1-form on M. If ¢ = ¢(s) is a polynomial in s, then F is a weak Landsberg metric
if and only if F'1s a Berwald metric.

Theorem 1.1 is the generalization of the main theorem on unicorns problem for reg-
ular (o, B)-metrics given in [11]. Tt also gives a negative answer for the generalized
unicorns problem on regular («, §)-metrics in the case of the dimension (n > 3).

Theorem 1.2. Let F = a¢(s),s = g, be a regular (o, B)-metric of non-Randers
type on an n-dimensional manifold M (n > 3), where o is a Riemannian metric and
Bis a 1-form on M. If ¢(s) = 1+ s+ s>+ s3+st+...+ 5™ m > 2, is a polynomial
in s, then Fis of relatively isotropic mean Landsberg curvature, J + c(x)FI =0, if
and only if it is a Berwald metric.

2. Preliminaries
A Finsler manifold (M, F) is a C*°- manifold M equipped with a Finsler metric
which is a continuous function F': TM — [0, 00) with the following properties:

1. F(x,y) is C* on TM\{0}. (Smoothness)
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2. F(x, A\ y) = A F(x, y) for all A > 0. (Positive Homogeneity)

3. The fundamental tensor g;;(x,y) is positive definite at all (x, y) € TM \{0},
where

gij(z,y) == %[FZ]yz‘yj (z,9).

The wellknown examples of Finsler metrics are Minkowski metrics, Riemannian
metrics, Randers metric, Kropina metric, Matsumoto metric, square metric. The
fundamental tensor is express as

gy = gij(z,y)dz' @ da’,

1
where Ggij ‘= §[F2]yiyj.
The Cartan tensor is defined as

1
Cije 1= 7 [F7]

1 0g;; ,
yiyiyk = 58%%, I; == ¢*Ciju,
where (¢"7) = (g;;)~'. We define C' := Cjjpder’ ® dr? @ dz*, and I := I;(z,y)d’,
which are called Cartan torsion and the mean Cartan torsion. The Cartan torsion
C and the mean Cartan torsion I both characterize the Riemannian metrics among
Finsler metrics. A C'*- curve ¢ = o(t) in a Finsler manifold (M, F) is called a
geodesic if and only if it satisfies the following differential equation:

519G (o(1), 5(1)) = 0,
where G = G'(z,y) are functions on TM defined by

i L
6'i= 10" { Iyt~ [P}
G are called the spray coefficients of F.
Let a = y/a;;(z)y*y? be a Riemannian metric and § = b;(z)y’, a 1-form on an
n-dimensional manifold M. An («, f)-metric is a Finsler metric express as

where ¢ = ¢(s) is a continuous differential function on an open interval (—by, by),
satisfying

1"

3(s) =50 (s) + (0? = s%)¢ () > 0, [s|<b<b, (1)
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where 8 satisfies || Bz |la < bo, (or || Sz ||a < bo, ) for any x € M. Such metrics are
called regular (or almost regular) (a, 3)-metrics ([9]).
Let G* and G?, denote the spray coefficients of F and « respectively, given by ([11],

[15])

Gi — Gla —+ OéQSé + @{-20(@50 -+ 7’00}{% + &bl}’ (2)
where
¢/
Q=
¢ — 50
. Q- sQ
CO2l 4+ sQ 4 (07— s2)Q'T
1 1
rij = 5 iy +b54),  sij = 5 (bi; — bjpa), (3)
2 2
33- = aimsmj, rj = 0"y, 85 = by = 0" sy, (4)
Too = Tijyiyj, Sé = Séyj-
Here ”|” denotes the covariant derivative with respect to Levi-Civita Connection
of a.

A Finsler metric F on a manifold M is called a Berwald metric if in any standard
local coordinate system (a°,y') in T'My, the Christoffel symbol I, = T"; () are

. 1. .
functions of x € M only, in which case, G* := §F§k(x)y]yk are quadratic in y =
0

yza— | . If F is a Berwald metric, the space (M, F) is called the Berwald space. It
:,UZ

is wellknown that every Riemannian and locally Minkowskian metric are Berwald
metric, i.e.,

{Riemannian} and {locally Minkowskian} C {Berwald}.

The landsberg curvature is defined by L := L;j,dz'®dz? @dz"*. A Finsler metric F is
called the Landsberg metric if Landsberg curvature L vanishes, i.e. L=0. Further,
every Berwald metric is Landsberg metric but converse is not true, i.e.,

{Berwald metrics} C {Landsberg metrics}
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but
{Landsberg metrics} < {Berwald metrics}

always. There is a weaker non-Riemannian quantity than the Landsberg curvature
L in Finsler geometry, J = J,dz*, where

Ty = g" Lijg,

where (g;;)™* = (¢%). More generally, we have the following

3 \J
L: Liji = Cijpmy™ —> J + J; = ¢"" Liji, = Lyny™
C : Cartan torsion [ : mean Cartan torsion
L : Landsberg curvature J : mean Landsberg curvature.

Facts: F is Riemannian < C =0« I = 0.
A Finsler metric F is called the weak Landsberg metric if its mean Landsberg
curvature J vanishes, i.e., J = 0. A Finsler metric F is said to be of relatively
isotropic weak Landsberg curvature if F satisfies J + ¢F'I = 0, where ¢ = ¢(x) is a
scalar function, I is mean Cartan torsion.
Clearly,
{Landsberg metrics} C {weak Landsberg metrics}

C {Finsler metric satisfying J+cFI = 0}.

Questions:

1. Is there a weak Landsberg metric which is not a Landsberg metric 7
2. Is there a regular weak Landsberg metric that is Berwald metric ?

The weak Landsberg metric that are not Berwald metric are called generalized
unicorns.

By (2), it is easy to see that if § is parallel with respect to «, which is equivalent
to rij = s;; = 0, then G* = G',. In this case, F is a Berwald metric.

B

Lemma 2.1. For an (o, 3)-metric F = a¢(s), s = =,
and only if r; + s; = 0.
We study the generalized unicorns problem for regular (a, §)-metrics. Now, we

write some lemmas to explain it.

b=| Bz |la s a constant if

3. Some Important lemmas

Let F' = ag¢(s), s = é, be a regular («, 5)-metric on a manifold M of dimension
a

n (n > 3). For our aim, we need the following lemmas about the (a, )-metrics of
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weak Landsberg type.

Lemma 3.1. (See [8, 13]) Let F' = a¢(s), s = g, be an («, B)-metric on a

manifold M of dimension n (n > 3), where a = y/a;j(x)y'y’ is a Riemannian

metric and 3 = b;(x)y" is a 1-form on M. Then F is a weak Landsberq metric, i.e.,
= 0 if and only if B satisfies

sij =0, (5)

Tij = k(b2aij — b;b;) + eb;b;, (6)

where k = k(x) and e = e(x) are scalar functions on M and ¢ = ¢(s) satisfies the
following ODE:

ik + esths = 0, (7)
where
by = VP —ganz| Y= S
Az
/ P
S b?
Pz 1= m@/ﬁ + m%,
where

= —(nA+1+5Q)(Q — sQ) — (¥ — (1 +5Q)Q",

/

A:=1+sQ+ (1* - s%)Q.

Using the lemma 3.1, we can prove the following lemma.

Lemma 3.2.(See [}]) Let F = a¢(s),s = g, be a non-Riemannian (o, )-metric
on a manifold M of dimension n (n > 3). If F is a weak Landsberg metric, i.e., J
= 0 and b 1s a constant on M, then F is a Berwald metric.

Proof. By the assumptions that b is a constant and F is a non-Riemannian (c,
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B)-metric, we find that b # 0. Further, by lemma 2.1, we have r; + s; = 0. Then
by (4) and (5), we have

r; = 0. (8)
Equation (6), contracting by b yields
r; = eb’b;. (9)
From (8) and (9), we get
eb; = 0. (10)

Contracting this equation by ¢/, we have eb® = 0, that implies e = 0 by b # 0,
putting e = 0 in (7) yields

kipy = 0. (11)

If v»; = 0, then by the definition of vy, we get [—”’QA’;MS} =0.
After solving this equation, we find that

b? — s2P
Al
is a constant for | s | < b < by. Letting s = b yields A(s) = 0, which implies that
¢ = 0. By Proposition 2.2 in [13], we know that F is a Riemannian metric, which

is a contradiction.
Therefore, we get k = 0 by (11), putting k = e = 0 into (6), we get

A(s) ==

By (5) and (12), we see that (3 is a parallel with respect to «, which implies that
F is a Berwald metric.

Lemma 3.3. (See [}]) Let EQ denote the numerator of left of (7), then (7) holds
if and only iof

EQ =0, (13)
holds and EQ can be expressed as below:

EQ = By + b*By + b*By + 0°Bg, (14)
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where
= Bz lla
BO = b()lS + b0282 + 50383 + b0484 + 60585 + bo@Sﬁ + b0787 + bogSS,
By := boy + ba1 5 4 bgas? + bogs® + bays® 4 byss® + bogs®,
By := bay + by 5 + byos® + bygs® + byys?,
Bg := bgy + bg1 5 + bgas?,
and
bor = 2(n + 1)¢ ¢°(e — k),
boz = (n+1)¢* (20" ¢+ 96" ) (k — e),
bos = 20°[(n+1)¢¢'¢" +8(n + 16" — (n + 4)¢?¢" | (e — k),
bos = [2010% — (Tn + 24)6°¢'¢" + (n + 25)6°¢" — 8(n + 1)¢"¢" ¢ + 14(n +
1)¢" [¢*(k —e), ,
bos i= 6[3(n —4)0°¢"¢" — 3(3n + 8)¢¢ 9" —16(1+n)gs" "
+(52 4+ )¢ ¢ + 6(n + 1)6” + 6¢°¢ 0] (k — ¢),
bos = [(4 = 5n)¢*¢" +6(5+ 2n)¢" 0" ¢ + (1+n)¢" + 3¢ ¢* — (8 + 5n)¢" ¢?¢"
—20"¢"9\ + (Tn — 24)9°6'¢"¢" + 66" ¢°6(*) —10(n + 1>¢"‘¢¢”] (k—e),
bor = [2(n +1)¢"¢" — (7n+4)¢> ¢’ ¢+4¢¢3¢ oD — 20" 2™ 6¢¢ “¢°
+4(2n — 1)¢2¢ ¢" +(n— 2)¢3¢" 9"+ n¢¢> ¢ + (12— 5n)¢¢ 00" (k—e),
bos == [(n+1)¢" ¢ +2(n — 2)¢?¢" +ngd”¢"¢" — 3ngd”¢"
+30%0" 9" — 267079 6 + (2 = n)d?¢ 9" 0" | (k — ¢),
bao := —(n+ 1)k¢” ¢*,
ba1 1= 2¢°[3ed?¢” — (4 + n)k¢?¢" +2(n+1)(e — k;)qsqs'qs” +2(n+ 1)k¢"],
by i = —¢*{2(2k — €)¢? ¢ + [(n + 31)k + de(n — 5)]¢" ¢ + 6k (n + 1)¢"
+2(n +1)(Te — 8k)¢"¢" ¢ + [(18 + n)e — 8(n + 3)k ]¢ d)2¢ b
bys = ¢{3(2—n)ed®d " + [Be(n+6) — 12(n +2)k]¢" ¢*¢" +4(n+ 1)k¢” + 6(n —
Dko" *¢"
+[6(2n+11)k+e(n—44)]¢*¢ " +6(n+1)(3e 4k)¢¢ ) +6(2kr €)¢ ¢3¢>(4)},
by = [4e(2n — 3) + 3(16 — 5n)k]¢*¢p ¢ ¢ + 6(e — Qk:)qb qb3gz5 k(14 n)¢”
+2(n+1)(8n — 5e)¢" pp” + 6[ (2n +5) — (4n+T)k]¢" ¢ ¢ + [Sk(n +1) = 3e(n +
)]¢ 92" +2(3k Ze)cﬁ% oW + 2 (5n - 1)/<r 3(n+6)e J¢3" — 3(2e - 3/<r)<z> ¢4

/////

+2(2k )¢ oW p24-2(5k— 4e)gb ' ¢+6(3k: Qe)qsgb * 3 4+-4(2e— 3k;)¢ #3¢" oW
+n(e—2k)p" " +[2(9e+k) +n(9e —19k)]¢' ¢°6" +(2— 1) (3k —2¢)¢"¢ """,
bas = {2(n — 2)¢%¢" + (n+1)¢" ¢ — 3ng 0" ¢ + npe " ¢"
+30" 920" — 20" 020" ¢ + (2 — n)¢?¢ 9" 9"} (2e — 3k),
bio := k@160 — ngd ¢ + 2020 — 2(n +1)¢"¢"],
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" 12

ba = *{3[(4 — n)k +2]¢?¢ ¢ + [2(n+ 1)e — k(14 + 5n)|pd ¢~ — 6kp?p ¢V
+3nkdd " +6k(n+1)¢"¢"},

bir == —p{2(3k — €)9%¢" ¢ + 3(e — 3k)p*¢™ — 6k¢"p?¢! + [(5n + 8)k + 2(n —

11)e]¢?¢" +3nke” p¢” + (5e — 13k)(n+1)¢¢” ¢ +6k(n+1)¢" ¢" +[3(8 — 3n)k +

(12+n)elp’s'¢ 0"},

bis == {[2k(4 + Tn) — e(n + 22)]¢%¢ ¢ + (n — 2)(3k — €)¢°¢ " ¢" + [de(n + 1) —

k(8 4 11n)]¢" ¢ ¢ +6(e — 3k)p' ¢ ¢° + 4(3k — )¢ ¢*¢" oW + 2k(n + 1)¢"¢" —

2k¢" ¢2 9+ [2e(n + 3) + 3k(4 — 3n)|¢"6?¢" 0" + nkod ¢},

bus == {2(n +2)0%0" — 20" 6*6"6W + ngo"¢"0" + (2~ )¢ ¢*¢"¢”
+H(n+1)¢"0" —3n0"0" 6 + 30" 9" 6} (3k — e), 2

boo == —k¢*[3¢°0" = 2¢°¢ ¢! — 600" +ngg ¢’ ¢" + (1 +n)p" ¢

e 6¢2¢”§ ¢ +(2-n)¢*0" 9" —3(2+n)og
+2n6¢ ¢ ¢ +2(n+1)¢ ¢ "},

bor = —h{2(n = 2)6%6" — 20" ¢*¢" ) —3n¢"¢" ¢ + 397" ¢

+(n+1)8" 0" + (2 -n)p 80" ¢" + nos’s 9"},

4. Special unicorns related with a polynomial
Assume that ¢ = ¢(s) is a polynomial which is expressed as below:

"2

13

2
’.

]//3
¢

/

"2

p=1+s+s"+s. (15)

Lemma 4.1. Let F' = a¢(s), s = g, be a non-Riemannian weak Landsberg (a,
B )-metric on a manifold M of dimension n (n > 3) and ¢ = ¢(s) =1+ s+ s>+ s,
a polynomaial in s. Then b is a nonzero constant on M. In this case, F is a Berwald
metric.

Proof. Firstly, let F be a non-Riemannian («, §)-metric, i.e., any point x € M
satisfying b(x) = 0 must be a isolated point on M. Then, if a continuous function
= p(x) satisfies b(z)u(x) = 0 on M, then u(x) = 0 on M by the continuity of
p= p(x).

Now, by lemma 3.1 and 3.3, F= a¢(s), s= 3/, is a weak Landsberg metric if and
only if ¢ satisfies (13) and [ satisfies (5) and (6). Consider following three cases:
Case A. When deg(¢) = 1, i.e. ¢ = 1+ s. In this case, the metric F becomes
Randers metric.

Putting ¢(s) = 1+ s in equation (13) and by using the Maple program, we have

aps® + ays +ag = 0, (16)
where

ag := —(n + 1)kb?,
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ar :=2(n+1)(e — k),

as ;= (n+1)(e — k).

Note that ag, ai, as are independent of s, so (16) is equivalent to ag = a; = as = 0.
It is easy to see that k = e = 0, from (6), we eliminate r;; = 0. By (5) and r;; =0,
we obtain that 8 is parallel with respect to .. In this case, b is a constant and F
is a Berwald metric, i.e., Randers metric becomes Berwald metric.
Case B. When deg(¢) = 2, i.e., ¢(s) = 1 + s + s> In this case, metric F reduces
2
to first approximate Matsumoto metric, i.e., F = a+ [+ 6—
!
Putting ¢(s) = 1 + s + s? in equation (13) and using the Maple program, we get
ms' =0, 0<i<11, (17)

where 19,71, ..., 711 are all independent of s. Particularly, we have

no = —b’k(1 4 26*)(20*(n — 11) + (n + 1)), (18)

2 = 8(19 — 14n)kb® + 4b*[(49 4+ n)e — (14 + 23n)k]

+4b%[(25 + n)e — 5(n + 71)k] + (n + 1)(e — k), (19)
Mo = 3(k — e)(41n — 67) + 24b*(2e + k) (2 — n), (20)
m1 = 18(n — 1)(k —e). (21)

From 7y, = 0, we get k = e. From equation (20), we get
Mo = 72(2 — n)b?e,

If 7o = 0, then k = e = 0. Plugging ¢ = 1+ s+ s? into (1) and letting s = 0 yields
1+ 2b* > 0. Thus 7y = 0 implies that k¥ = 0 by equation (18). Putting k¥ = 0 into
equation (19) yields

ny = [46%(49 + n) + 4b*(25 + n) + (n + 1)]e.

By 1, = 0, we have e = 0.
Similar to proof of case A, we have that b is a constant and F is a Berwald metric.
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Thus, every first approximate Matsumoto metric reduces to a Berwald metric.
Case C. When deg(¢) = 3, i.e., ¢ = 1+ s+ s? + s3. In this case, metric F reduces
2 3
to second approximate Matsumoto metric, i.e., F=a+ 3+ ﬁ— + 6—2
a o«
Putting ¢(s) = 1 + s + s? + 5% in equation (13) and using the Maple program, we
get

fist=0, 0<i<17, (22)

where fo, f1, ..., fir are all independent of s. Particularly, we have

fis = 2(kfizk + efise), (23)
fra = kfra + € frae, (24)
fis = =2(k fisk + efise), (25)
fie = —4(k fior + €fi6e), (26)
fir =192(n — D)(k — e), (27)

where
fisk == 24(53n — 150)b4 + 12(2217 — 919n)b2 + (11294n — 16861),

Fize 1= 48(60n — 189)b* + (13809 — 4846n)b? + (16867 — 11288n),

Fran 1= 576(n — 3)b* + 12(1533 — T61n)b? + 3(4699n — 8511),

frae == 1728(n — 3)b* + 120(2364 — 1045n) + (26557 — 14097n),

Fisi = (69n — 133)b? + (6252 — 3153n),

Fise 1= 24(159n — 331))b? + (3153n — 6252),

fiek 2 192(n — 2)b* + (543 — 366n),

Fige 1= 576(n — 2)b% + (3661 — 543).

By equation (27), fi7 = 0, means that (k —e) = 0, i.e., k = e. Putting &k = e in
equation (26), we get

fie = —3072(n — 2)b%e.
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From the equation fi14 =0, we get e = 0. Thus we have k = e = 0.

Similar to proof of case A, we have that b is a constant and F is a Berwald metric.
Thus, in this case, every second approximate Matsumoto metric becomes a Berwald
metric.

5. (o, f)-metrics with relatively isotropic weak Landsberg curvature

In this section, we study about regular (a, ()-metrics of non-Randers type
with relatively isotropic mean Landsberg curvature. Here, we must mention the
following lemmas:

Lemma 5.1. (See [13]) Let F' = a¢(s), s = g, be a regular (o, B)-metric on
a manifold M of dimension n (n > 3). Then F is of relatively isotropic mean
Landsberg curvature, i.e., there exist a scalar function ¢ = c(x) on M such that

J+c(x)FI =0, if and only if B satisfies

Sij = 0, (28)

Tij = k(bQGij — blbj) + ebibj, (29)

where k = k(x) and e = e(x) are scalar functions on M and ¢ = ¢(s) satisfies the
following ODE:

{1k + esths} + c(2)D(p — s¢ ) = 0, (30)
where @, 1y, Y3 are defined in section 3.

Lemma 5.2. (See [5]) Let PPE denote the numerator of the left of equation (30),
then (30) holds if and only if

PPE =0, (31)
and PPE can be expressed as
PPE = EQ + PFE, (32)

where EQ is defined by equation (14) and PE can be written as
PE = (I = *)p(¢ — 5¢)¢" + {(n — 2)(s* = b*)sp”
+Hn+1)(¢—5¢)[(0? = 5%)¢" —s6]¢" + (n+1)(d — s6')*¢}. We prove
the following theorem:
Theorem 5.3. Let F' = a¢(s), s = g, be a regular (o, B)-metric of non-Randers
type on an n-dimensional manifold M (n > 3), where o = \/a;;(x)y'y’ is a Rieman-
nian metric and B = b;(x)y* is a 1-form on M. If $(s) = 1+s+52+s3+st+...+5™,
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m > 2, 15 a polynomial in s, then F is of relatively isotropic mean Landsberg cur-
vature, J + c(x)F1 =0, if and only if it is a Berwald metric.

Proof. Firstly, let F is of relatively isotropic mean Landsberg curvature. By (31)
and (32), lemma 5.1 and lemma 5.2 holds, Express ¢(s) as below:

p=1+s+s*+s+st+..+m m>2 (33)
From (33), (32) and (31), we have
vis' =0, 0<i<r, (34)

where v, vy, ..., v, are independent of s.
Now, using the Maple program, we get the following results in three steps.
Step 1. When m =2, ¢ = 1 + s + 52, we get

v, = —216nc,

and r = 13. In this case, because v, = 0, so ¢ must be zero.
Step 2. When m =3, ¢ = 1 + s+ 52 + 5%, we get

v, = —12288cn,

and r = 20. In this case, because v, = 0, so ¢ must be zero.
Step 3. When m > 4, we have

v, = —4nm(m + 1)*(m — 1)*c,

and
r="7m—1.

By the same reason as above, ¢ must also be zero. Therefore we conclude that, if
F =ag¢(s), s = g is of relatively isotropic mean Landsberg curvature, then F is a
weak Landsberg metric, which implies that F is Berwald metric. In other words, if
Randers metric is of relatively isotopic mean Landsberg curvature then it is a weak
Landsberg metric and consequently becomes a Berwald metric. Similar, results

hold for first and second approximate Matsumoto metric.
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