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Abstract: In this paper, we study the generalized unicorns problem on regular
(α, β)-metrics in the form of F = αφ(s), s = β/α, where α is a Riemannian
metric and β is a 1-form on the manifold. We prove that, if φ = φ(s) is a special
polynomial in s, then F is a weak Landsberg metric if and only if F is a Berwald
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1. Introduction
The unicorns problem is partially solved for an important class of Finsler (α, β)-

metrics in the form of F = αφ(s), s = β/α, where α is a Riemannian metric and β
is a 1-form on the manifold M. A Finsler metric F is called Landsberg metric if the
Landsberg curvature L := Lijkdx

i ⊗ dxj ⊗ dxk vanishes [7]. A long existing open
problem in Finsler geometry is
Is there any Landsberg metric which is not a Berwald metric ?
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D. Bao [2] named the Landsberg metric that are not Berwald metric the unicorns.
Z. Shen [12] has proved that a regular (α, β)-metric F = αφ(s), s = β/α, on a
manifold M of dimension n (n ≥ 3) is a Landsberg metric if and only if F is a
Berwald metric, i.e. there is no unicorn in regular (α, β)-metrics on the manifold
M of dimension n ≥ 3. On the other hand, Z. Shen and G. S. Asanov (see [1] and
[11]) have constructed almost regular (α, β)-metrics which are Landsberg metrics
but not Berwald metrics .
A Finsler metric F is called weak Landsberg metric if the mean Landsberg cur-
vature J = Jkdx

k vanishes, where Jk := gijLijk. It is clear that every Landsberg
metric is a weak Landsberg metric. In [8], B. Li and Z. Shen have studied weak
Landsberg (α, β)-metrics and characterized almost regular weak Landsberg (α, β)-
metrics on an n-dimensional manifold M (n ≥ 3). They have also shown that [8]
there exist almost regular weak Landsberg metrics which are not Landsberg met-
rics in dimension greater than two. At this juncture we have the following quetion:
Is there a regular weak Landsberg metric that is Berwald metric ?
The weak Landsberg metric that are not Berwald metric are called generalized
unicorns.
In this paper, we mainly study the generalized unicorns problem for regular (α, β)-
metrics.The main findings of this paper lies in Theorem 4.1 and Theorem 5.3. One
can easily prove the following theorem:

Theorem 1.1. Let F = αφ(s), s = β/α, be a regular (α, β)-metric on an n-
dimensional manifold M (n ≥ 3), where α is a Riemannian metric and β is a
1-form on M. If φ = φ(s) is a polynomial in s, then F is a weak Landsberg metric
if and only if F is a Berwald metric.

Theorem 1.1 is the generalization of the main theorem on unicorns problem for reg-
ular (α, β)-metrics given in [11]. It also gives a negative answer for the generalized
unicorns problem on regular (α, β)-metrics in the case of the dimension (n ≥ 3).

Theorem 1.2. Let F = αφ(s), s = β
α

, be a regular (α, β)-metric of non-Randers
type on an n-dimensional manifold M (n ≥ 3), where α is a Riemannian metric and
β is a 1-form on M. If φ(s) = 1 + s+ s2 + s3 + s4 + ...+ sm, m ≥ 2, is a polynomial
in s, then F is of relatively isotropic mean Landsberg curvature, J + c(x)FI = 0, if
and only if it is a Berwald metric.

2. Preliminaries

A Finsler manifold (M, F) is a C∞- manifold M equipped with a Finsler metric
which is a continuous function F : TM → [0,∞) with the following properties:

1. F(x, y) is C∞ on TM\{0}. (Smoothness)
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2. F(x, λ y) = λ F(x, y) for all λ > 0. (Positive Homogeneity)

3. The fundamental tensor gij(x, y) is positive definite at all (x, y) ∈ TM \{0},
where

gij(x, y) :=
1

2
[F 2]yiyj(x, y).

The wellknown examples of Finsler metrics are Minkowski metrics, Riemannian
metrics, Randers metric, Kropina metric, Matsumoto metric, square metric. The
fundamental tensor is express as

gy := gij(x, y)dxi ⊗ dxj,

where gij :=
1

2
[F 2]yiyj .

The Cartan tensor is defined as

Cijk :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

, Ii := gjkCijk,

where (gij) = (gij)
−1. We define C := Cijkdx

i ⊗ dxj ⊗ dxk, and I := Ii(x, y)dxi,
which are called Cartan torsion and the mean Cartan torsion. The Cartan torsion
C and the mean Cartan torsion I both characterize the Riemannian metrics among
Finsler metrics. A C∞- curve σ = σ(t) in a Finsler manifold (M, F) is called a
geodesic if and only if it satisfies the following differential equation:

σ̈i + 2Gi(σ(t), σ̈(t)) = 0,

where Gi = Gi(x, y) are functions on TM defined by

Gi :=
1

4
gil
{

[F 2]xkyly
k − [F 2]xl

}
.

Gi are called the spray coefficients of F.
Let α =

√
aij(x)yiyj be a Riemannian metric and β = bi(x)yi, a 1-form on an

n-dimensional manifold M. An (α, β)-metric is a Finsler metric express as

F = αφ(s), s =
β

α
,

where φ = φ(s) is a continuous differential function on an open interval (−b0, b0),
satisfying

φ(s)− sφ′
(s) + (b2 − s2)φ

′′
(s) > 0, | s | ≤ b < b0, (1)
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where β satisfies ‖ βx ‖α < b0, (or ‖ βx ‖α ≤ b0, ) for any x ∈ M. Such metrics are
called regular (or almost regular) (α, β)-metrics ([9]).
Let Gi and Gi

α denote the spray coefficients of F and α respectively, given by ([11],
[15])

Gi = Gi
α + αQsi0 +Θ{−2αQs0 + r00}

{
yi

α
+

Q
′

Q− sQ′ b
i

}
, (2)

where

Q :=
φ

′

φ− sφ′ ,

Θ :=
Q− sQ′

2[1 + sQ+ (b2 − s2)Q′ ]
,

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i), (3)

sij := aimsmj, rj := bmrmj, sj := bms
m
j = bmsmj, (4)

r00 := rijy
iyj, si0 := sijy

j.

Here ”|” denotes the covariant derivative with respect to Levi-Civita Connection
of α.
A Finsler metric F on a manifold M is called a Berwald metric if in any standard
local coordinate system (xi, yi) in TM0, the Christoffel symbol Γijk = Γijk(x) are

functions of x ∈ M only, in which case, Gi :=
1

2
Γijk(x)yjyk are quadratic in y =

yi
∂

∂xi
|x . If F is a Berwald metric, the space (M, F) is called the Berwald space. It

is wellknown that every Riemannian and locally Minkowskian metric are Berwald
metric, i.e.,

{Riemannian} and {locally Minkowskian} ⊂ {Berwald}.

The landsberg curvature is defined by L := Lijkdx
i⊗dxj⊗dxk. A Finsler metric F is

called the Landsberg metric if Landsberg curvature L vanishes, i.e. L=0. Further,
every Berwald metric is Landsberg metric but converse is not true, i.e.,

{Berwald metrics} ⊂ {Landsberg metrics}
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but
{Landsberg metrics} ( {Berwald metrics}

always. There is a weaker non-Riemannian quantity than the Landsberg curvature
L in Finsler geometry, J = Jkdx

k, where

Jk := gijLijk,

where (gij)
−1 = (gij). More generally, we have the following

C −→ I : Ii = gjkcijk
↓ ↓

L : Lijk := Cijk|my
m −→ J : Ji := gjkLijk = Ii|my

m

C : Cartan torsion I : mean Cartan torsion
L : Landsberg curvature J : mean Landsberg curvature.
Facts: F is Riemannian ⇔ C = 0⇔ I = 0.
A Finsler metric F is called the weak Landsberg metric if its mean Landsberg
curvature J vanishes, i.e., J = 0. A Finsler metric F is said to be of relatively
isotropic weak Landsberg curvature if F satisfies J + cFI = 0, where c = c(x) is a
scalar function, I is mean Cartan torsion.
Clearly,

{Landsberg metrics} ⊂ {weak Landsberg metrics}
⊂ {Finsler metric satisfying J + cFI = 0}.

Questions:

1. Is there a weak Landsberg metric which is not a Landsberg metric ?

2. Is there a regular weak Landsberg metric that is Berwald metric ?

The weak Landsberg metric that are not Berwald metric are called generalized
unicorns.
By (2), it is easy to see that if β is parallel with respect to α, which is equivalent
to rij = sij = 0, then Gi = Gi

α. In this case, F is a Berwald metric.

Lemma 2.1. For an (α, β)-metric F = αφ(s), s = β
α
, b =‖ βx ‖α, is a constant if

and only if ri + si = 0.
We study the generalized unicorns problem for regular (α, β)-metrics. Now, we
write some lemmas to explain it.

3. Some Important lemmas

Let F = αφ(s), s =
β

α
, be a regular (α, β)-metric on a manifold M of dimension

n (n ≥ 3). For our aim, we need the following lemmas about the (α, β)-metrics of
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weak Landsberg type.

Lemma 3.1. (See [8, 13]) Let F = αφ(s), s = β
α
, be an (α, β)-metric on a

manifold M of dimension n (n ≥ 3), where α =
√
aij(x)yiyj is a Riemannian

metric and β = bi(x)yi is a 1-form on M. Then F is a weak Landsberg metric, i.e.,
J = 0 if and only if β satisfies

sij = 0, (5)

rij = k(b2aij − bibj) + ebibj, (6)

where k = k(x) and e = e(x) are scalar functions on M and φ = φ(s) satisfies the
following ODE:

ψ1k + esψ3 = 0, (7)

where

ψ1 :=
√
b2 − s2∆1\2

[√
b2 − s2Φ

∆
3
2

]′

,

ψ2 := 2(n+ 1)(Q− sQ′
) + 3

Φ

∆
,

ψ3 :=
s

b2 − s2
ψ1 +

b2

b2 − s2
ψ2,

where

Φ := −(n∆ + 1 + sQ)(Q− sQ′
)− (b2 − s2)(1 + sQ)Q

′′
,

∆ := 1 + sQ+ (b2 − s2)Q
′
.

Using the lemma 3.1, we can prove the following lemma.

Lemma 3.2.(See [4]) Let F = αφ(s), s = β
α
, be a non-Riemannian (α, β)-metric

on a manifold M of dimension n (n ≥ 3). If F is a weak Landsberg metric, i.e., J
= 0 and b is a constant on M, then F is a Berwald metric.

Proof. By the assumptions that b is a constant and F is a non-Riemannian (α,
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β)-metric, we find that b 6= 0. Further, by lemma 2.1, we have rj + sj = 0. Then
by (4) and (5), we have

rj = 0. (8)

Equation (6), contracting by bi yields

rj = eb2bj. (9)

From (8) and (9), we get

ebj = 0. (10)

Contracting this equation by bj, we have eb2 = 0, that implies e = 0 by b 6= 0,
putting e = 0 in (7) yields

kψ1 = 0. (11)

If ψ1 = 0, then by the definition of ψ1, we get
[√

b2−s2Φ
∆

3
2

]′
= 0.

After solving this equation, we find that

Λ(s) :=

√
b2 − s2Φ

∆
3
2

is a constant for | s | ≤ b < b0. Letting s = b yields Λ(s) = 0, which implies that
φ = 0. By Proposition 2.2 in [13], we know that F is a Riemannian metric, which
is a contradiction.
Therefore, we get k = 0 by (11), putting k = e = 0 into (6), we get

rij = 0. (12)

By (5) and (12), we see that β is a parallel with respect to α, which implies that
F is a Berwald metric.

Lemma 3.3. (See [4]) Let EQ denote the numerator of left of (7), then (7) holds
if and only if

EQ = 0, (13)

holds and EQ can be expressed as below:

EQ = B0 + b2B2 + b4B4 + b6B6, (14)
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where
b :=‖ βx ‖α,
B0 := b01s+ b02s

2 + b03s
3 + b04s

4 + b05s
5 + b06s

6 + b07s
7 + b08s

8,
B2 := b20 + b21s+ b22s

2 + b23s
3 + b24s

4 + b25s
5 + b26s

6,
B4 := b40 + b41s+ b42s

2 + b43s
3 + b44s

4,
B6 := b60 + b61s+ b62s

2,
and
b01 := 2(n+ 1)φ

′
φ5(e− k),

b02 := (n+ 1)φ4
(
2φ

′′
φ+ 9φ

′2)
(k − e),

b03 := 2φ3
[
(n+ 1)φφ

′
φ

′′
+ 8(n+ 1)φ

′3 − (n+ 4)φ2φ
′′′]

(e− k),

b04 :=
[
2φ(4)φ3 − (7n + 24)φ2φ

′
φ

′′′
+ (n + 25)φ2φ

′′2 − 8(n + 1)φ
′′
φ

′2
φ + 14(n +

1)φ
′4]
φ2(k − e),

b05 := φ
[
3(n− 4)φ3φ

′′
φ

′′′ − 3(3n+ 8)φ2φ
′2
φ

′′′ − 16(1 + n)φφ
′3
φ

′′

+(52 + 7n)φ2φ
′
φ

′′2
+ 6(n+ 1)φ

′5
+ 6φ3φ

′
φ(4)
]
(k − e),

b06 :=
[
(4− 5n)φ3φ

′′3
+ 6(5 + 2n)φ

′′2
φ

′2
φ2 + (1 + n)φ

′6
+ 3φ

′′′2
φ4 − (8 + 5n)φ

′3
φ2φ

′′′

−2φ4φ
′′
φ(4) + (7n− 24)φ3φ

′
φ

′′
φ

′′′
+ 6φ

′2
φ3φ(4) − 10(n+ 1)φ

′4
φφ

′′]
(k − e),

b07 :=
[
2(n+ 1)φ

′5
φ

′′ − (7n+ 4)φ
′3
φ

′′2
φ+ 4φ

′
φ3φ

′′
φ(4) − 2φ

′3
φ2φ(4) − 6φ

′
φ

′′′2
φ3

+4(2n− 1)φ2φ
′
φ

′′3
+ (n− 2)φ3φ

′′2
φ

′′′
+ nφφ

′4
φ

′′′
+ (12− 5n)φφ

′2
φ

′′
φ

′′′]
(k− e),

b08 :=
[
(n+ 1)φ

′4
φ

′′2
+ 2(n− 2)φ2φ

′′4
+ nφφ

′3
φ

′′
φ

′′′ − 3nφφ
′2
φ

′′3

+3φ2φ
′2
φ

′′′2 − 2φ2φ
′2
φ

′′
φ(4) + (2− n)φ2φ

′
φ

′′2
φ

′′′]
(k − e),

b20 := −(n+ 1)kφ
′2
φ4,

b21 := 2φ3
[
3eφ2φ

′′′ − (4 + n)kφ2φ
′′′

+ 2(n+ 1)(e− k)φφ
′
φ

′′
+ 2(n+ 1)kφ

′3]
,

b22 := −φ2{2(2k − e)φ3φ(4) + [(n+ 31)k + 4e(n− 5)]φ
′′2
φ2 + 6k(n+ 1)φ

′4

+2(n+ 1)(7e− 8k)φ
′′
φ

′2
φ+ [(18 + n)e− 8(n+ 3)k]φ

′
φ2φ

′′′},
b23 := φ{3(2−n)eφ3φ

′′
φ

′′′
+ [3e(n+ 6)− 12(n+ 2)k]φ

′2
φ2φ

′′′
+ 4(n+ 1)kφ

′5
+ 6(n−

4)kφ
′′
φ3φ

′′′

+[6(2n+11)k+e(n−44)]φ2φ
′
φ

′′2
+6(n+1)(3e−4k)φφ

′3
φ

′′
+6(2k−e)φ′

φ3φ(4)},
b24 := [4e(2n− 3) + 3(16− 5n)k]φ3φ

′
φ

′′
φ

′′′
+ 6(e− 2k)φ

′2
φ3φ(4) − k(1 + n)φ

′6

+2(n+ 1)(8n− 5e)φ
′4
φφ

′′
+ 6[e(2n+ 5)− (4n+ 7)k]φ

′2
φ

′′2
φ2 + [8k(n+ 1)− 3e(n+

2)]φ
′3
φ2φ

′′′
+2(3k− 2e)φ4φ

′′
φ(4) + [2(5n− 1)k− 3(n+ 6)e]φ3φ

′′3 − 3(2e− 3k)φ
′′′2
φ4,

b25 := 2(e−2k)(n+1)φ
′5
φ

′′
+[12k(n−2)+e(6−7n)]φ

′2
φ2φ

′′
φ

′′′
+n(16k−11e)φ

′3
φ

′′2
φ

+2(2k−e)φ′3
φ(4)φ2+2(5k−4e)φ

′3
φ

′′2
φ+6(3k−2e)φ

′
φ

′′′2
φ3+4(2e−3k)φ

′
φ3φ

′′
φ(4)

+n(e−2k)φφ
′′′
φ

′4
+[2(9e+k)+n(9e−19k)]φ

′
φ2φ

′′3
+(2−n)(3k−2e)φ3φ

′′′
φ

′′2
,

b26 := {2(n− 2)φ2φ
′′4

+ (n+ 1)φ
′4
φ

′′2 − 3nφ
′2
φ

′′3
φ+ nφφ

′′
φ

′′′
φ

′3

+3φ
′2
φ2φ

′′′2 − 2φ
′2
φ2φ

′′
φ(4) + (2− n)φ2φ

′
φ

′′2
φ

′′′}(2e− 3k),
b40 := kφ3[6φφ

′′2 − nφφ′
φ

′′′
+ 2φ2φ(4) − 2(n+ 1)φ

′2
φ

′′
],
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b41 := φ2{3[(4− n)k + 2e]φ2φ
′′
φ

′′′
+ [2(n+ 1)e− k(14 + 5n)]φφ

′
φ

′′2 − 6kφ2φ
′
φ(4)

+3nkφφ
′2
φ

′′′
+ 6k(n+ 1)φ

′3
φ

′′},
b42 := −φ{2(3k − e)φ3φ

′′
φ(4) + 3(e− 3k)φ3φ

′′′2 − 6kφ
′2
φ2φ(4) + [(5n + 8)k + 2(n−

11)e]φ2φ
′′3

+3nkφ
′3
φφ

′′′
+ (5e−13k)(n+ 1)φφ

′2
φ

′′2
+ 6k(n+ 1)φ

′4
φ

′′
+[3(8−3n)k+

(12 + n)e]φ2φ
′
φ

′′
φ

′′′},
b43 := {[2k(4 + 7n) − e(n + 22)]φ2φ

′
φ

′′3
+ (n − 2)(3k − e)φ3φ

′′2
φ

′′′
+ [4e(n + 1) −

k(8 + 11n)]φ
′3
φ

′′2
φ +6(e − 3k)φ

′
φ

′′′2
φ3 + 4(3k − e)φ

′
φ3φ

′′
φ(4) + 2k(n + 1)φ

′5
φ

′′ −
2kφ

′3
φ2φ(4)+[2e(n+ 3) + 3k(4− 3n)]φ

′2
φ2φ

′′
φ

′′′
+ nkφφ

′4
φ

′′′},
b44 := {2(n+ 2)φ2φ

′′4 − 2φ
′2
φ2φ

′′
φ(4) + nφφ

′3
φ

′′
φ

′′′
+ (2− n)φ

′
φ2φ

′′2
φ

′′′

+(n+ 1)φ
′4
φ

′′2 − 3nφ
′2
φ

′′3
φ+ 3φ

′2
φ

′′′2
φ2}(3k − e),

b60 := −kφ2[3φ2φ
′′′2 − 2φ2φ

′′
φ(4) − 6φφ

′′3
+ nφφ

′
φ

′′
φ

′′′
+ (1 + n)φ

′′2
φ

′2
],

b61 := kφ{−4φ2φ
′
φ

′′
φ(4) + 6φ2φ

′′′2
φ

′
+ (2− n)φ2φ

′′2
φ

′′′ − 3(2 + n)φφ
′
φ

′′3

+2nφφ
′2
φ

′′
φ

′′′
+ 2(n+ 1)φ

′3
φ

′′2},
b62 := −k{2(n− 2)φ2φ

′′4 − 2φ
′2
φ2φ

′′
φ(4) − 3nφ

′2
φ

′′3
φ+ 3φ

′2φ
′′′2
φ2

+(n+ 1)φ
′4
φ

′′2
+ (2− n)φ

′
φ2φ

′′2
φ

′′′
+ nφφ3φ

′′
φ

′′′}.
4. Special unicorns related with a polynomial

Assume that φ = φ(s) is a polynomial which is expressed as below:

φ = 1 + s+ s2 + s3. (15)

Lemma 4.1. Let F = αφ(s), s = β
α

, be a non-Riemannian weak Landsberg (α,
β)-metric on a manifold M of dimension n (n ≥ 3) and φ = φ(s) = 1 + s+ s2 + s3,
a polynomial in s. Then b is a nonzero constant on M. In this case, F is a Berwald
metric.

Proof. Firstly, let F be a non-Riemannian (α, β)-metric, i.e., any point x ∈ M
satisfying b(x) = 0 must be a isolated point on M. Then, if a continuous function
µ = µ(x) satisfies b(x)µ(x) = 0 on M, then µ(x) ≡ 0 on M by the continuity of
µ = µ(x).
Now, by lemma 3.1 and 3.3, F= αφ(s), s= β/α, is a weak Landsberg metric if and
only if φ satisfies (13) and β satisfies (5) and (6). Consider following three cases:
Case A. When deg(φ) = 1, i.e. φ = 1 + s. In this case, the metric F becomes
Randers metric.
Putting φ(s) = 1 + s in equation (13) and by using the Maple program, we have

a2s
2 + a1s+ a0 = 0, (16)

where

a0 := −(n+ 1)kb2,
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a1 := 2(n+ 1)(e− k),

a2 := (n+ 1)(e− k).

Note that a0, a1, a2 are independent of s, so (16) is equivalent to a0 = a1 = a2 = 0.
It is easy to see that k = e = 0, from (6), we eliminate rij = 0. By (5) and rij = 0,
we obtain that β is parallel with respect to α. In this case, b is a constant and F
is a Berwald metric, i.e., Randers metric becomes Berwald metric.
Case B. When deg(φ) = 2, i.e., φ(s) = 1 + s + s2. In this case, metric F reduces

to first approximate Matsumoto metric, i.e., F = α + β +
β2

α
.

Putting φ(s) = 1 + s+ s2 in equation (13) and using the Maple program, we get

ηis
i = 0, 0 ≤ i ≤ 11, (17)

where η0, η1, ..., η11 are all independent of s. Particularly, we have

η0 = −b2k(1 + 2b2)(2b2(n− 11) + (n+ 1)), (18)

η2 = 8(19− 14n)kb6 + 4b4[(49 + n)e− (14 + 23n)k]

+4b2[(25 + n)e− 5(n+ 7)k] + (n+ 1)(e− k), (19)

η10 = 3(k − e)(41n− 67) + 24b2(2e+ k)(2− n), (20)

η11 = 18(n− 1)(k − e). (21)

From η11 = 0, we get k = e. From equation (20), we get

η10 = 72(2− n)b2e,

If η10 = 0, then k = e = 0. Plugging φ = 1 + s+ s2 into (1) and letting s = 0 yields
1 + 2b2 > 0. Thus η0 = 0 implies that k = 0 by equation (18). Putting k = 0 into
equation (19) yields

η2 = [4b4(49 + n) + 4b2(25 + n) + (n+ 1)]e.

By η2 = 0, we have e = 0.
Similar to proof of case A, we have that b is a constant and F is a Berwald metric.
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Thus, every first approximate Matsumoto metric reduces to a Berwald metric.
Case C. When deg(φ) = 3, i.e., φ = 1 + s+ s2 + s3. In this case, metric F reduces

to second approximate Matsumoto metric, i.e., F = α + β +
β2

α
+
β3

α2
.

Putting φ(s) = 1 + s+ s2 + s3 in equation (13) and using the Maple program, we
get

fis
i = 0, 0 ≤ i ≤ 17, (22)

where f0, f1, ..., f17 are all independent of s. Particularly, we have

f13 = 2(kf13k + ef13e), (23)

f14 = kf14k + ef14e, (24)

f15 = −2(kf15k + ef15e), (25)

f16 = −4(kf16k + ef16e), (26)

f17 = 192(n− 1)(k − e), (27)

where
f13k := 24(53n− 150)b4 + 12(2217− 919n)b2 + (11294n− 16861),

f13e := 48(60n− 189)b4 + (13809− 4846n)b2 + (16867− 11288n),

f14k := 576(n− 3)b4 + 12(1533− 761n)b2 + 3(4699n− 8511),

f14e := 1728(n− 3)b4 + 12b2(2364− 1045n) + (26557− 14097n),

f15k := (69n− 133)b2 + (6252− 3153n),

f15e := 24(159n− 331))b2 + (3153n− 6252),

f16k : 192(n− 2)b2 + (543− 366n),

f16e := 576(n− 2)b2 + (366n− 543).

By equation (27), f17 = 0, means that (k − e) = 0, i.e., k = e. Putting k = e in
equation (26), we get

f16 = −3072(n− 2)b2e.
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From the equation f16 = 0, we get e = 0. Thus we have k = e = 0.
Similar to proof of case A, we have that b is a constant and F is a Berwald metric.
Thus, in this case, every second approximate Matsumoto metric becomes a Berwald
metric.

5. (α, β)-metrics with relatively isotropic weak Landsberg curvature
In this section, we study about regular (α, β)-metrics of non-Randers type

with relatively isotropic mean Landsberg curvature. Here, we must mention the
following lemmas:

Lemma 5.1. (See [13]) Let F = αφ(s), s = β
α
, be a regular (α, β)-metric on

a manifold M of dimension n (n ≥ 3). Then F is of relatively isotropic mean
Landsberg curvature, i.e., there exist a scalar function c = c(x) on M such that
J + c(x)FI = 0, if and only if β satisfies

sij = 0, (28)

rij = k(b2aij − bibj) + ebibj, (29)

where k = k(x) and e = e(x) are scalar functions on M and φ = φ(s) satisfies the
following ODE:

{ψ1k + esψ3}+ c(x)Φ(φ− sφ′
) = 0, (30)

where Φ, ψ1, ψ3 are defined in section 3.

Lemma 5.2. (See [5]) Let PPE denote the numerator of the left of equation (30),
then (30) holds if and only if

PPE = 0, (31)

and PPE can be expressed as

PPE := EQ+ PE, (32)

where EQ is defined by equation (14) and PE can be written as
PE := (b2 − s2)φ(φ− sφ′

)φ
′′′

+ {(n− 2)(s2 − b2)sφφ
′′2

+(n+ 1)(φ− sφ′
)[(b2− s2)φ

′ − sφ]φ
′′

+ (n+ 1)(φ− sφ′
)2φ}. We prove

the following theorem:

Theorem 5.3. Let F = αφ(s), s = β
α

, be a regular (α, β)-metric of non-Randers

type on an n-dimensional manifold M (n ≥ 3), where α =
√
aij(x)yiyj is a Rieman-

nian metric and β = bi(x)yi is a 1-form on M. If φ(s) = 1+s+s2 +s3 +s4 +...+sm,
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m ≥ 2, is a polynomial in s, then F is of relatively isotropic mean Landsberg cur-
vature, J + c(x)FI = 0, if and only if it is a Berwald metric.

Proof. Firstly, let F is of relatively isotropic mean Landsberg curvature. By (31)
and (32), lemma 5.1 and lemma 5.2 holds, Express φ(s) as below:

φ = 1 + s+ s2 + s3 + s4 + ...+ sm, m ≥ 2. (33)

From (33), (32) and (31), we have

vis
i = 0, 0 ≤ i ≤ r, (34)

where v0, v1, ..., vr are independent of s.
Now, using the Maple program, we get the following results in three steps.
Step 1. When m = 2, φ = 1 + s+ s2, we get

vr = −216nc,

and r = 13. In this case, because vr = 0, so c must be zero.
Step 2. When m = 3, φ = 1 + s+ s2 + s3, we get

vr = −12288cn,

and r = 20. In this case, because vr = 0, so c must be zero.
Step 3. When m ≥ 4, we have

vr = −4nm(m+ 1)3(m− 1)4c,

and
r = 7m− 1.

By the same reason as above, c must also be zero. Therefore we conclude that, if
F = αφ(s), s = β

α
is of relatively isotropic mean Landsberg curvature, then F is a

weak Landsberg metric, which implies that F is Berwald metric. In other words, if
Randers metric is of relatively isotopic mean Landsberg curvature then it is a weak
Landsberg metric and consequently becomes a Berwald metric. Similar, results
hold for first and second approximate Matsumoto metric.
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