South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 1 (2019), pp. 01-14.

ISSN (Print): 0972-7752

GENERALIZED UNICORNS PROBLEM WITH A SPECIAL (α, β) -METRIC

Gauree Shanker and Renu*

Department of Mathematics and Statistics, Central University of Punjab, Bathinda-151001, Punjab, INDIA.

E-mail: gshankar@cup.ac.in

*Department of Mathematics and Statistics Banasthali University, Banasthali-304022, Rajasthan, INDIA.

Email:renu3119@gmail.com

(Received: November 19, 2017)

Abstract: In this paper, we study the generalized unicorns problem on regular (α, β) -metrics in the form of $F = \alpha \phi(s)$, $s = \beta/\alpha$, where α is a Riemannian metric and β is a 1-form on the manifold. We prove that, if $\phi = \phi(s)$ is a special polynomial in s, then F is a weak Landsberg metric if and only if F is a Berwald metric. Further, we prove that if $\phi = \phi(s)$ is a polynomial in s and F is not a Randers metric, then F is of relatively isotropic mean Landsberg curvature if and only if it is a Berwald metric.

Keywords and Phrases: Finsler space, (α, β) -metric, Berwald metric, weak Landsberg metric, generalized unicorns problem.

2010 Mathematics Subject Classification: 53B40, 53C60.

1. Introduction

The unicorns problem is partially solved for an important class of Finsler (α, β) metrics in the form of $F = \alpha \phi(s)$, $s = \beta/\alpha$, where α is a Riemannian metric and β is a 1-form on the manifold M. A Finsler metric F is called Landsberg metric if the
Landsberg curvature $L := L_{ijk} dx^i \otimes dx^j \otimes dx^k$ vanishes [7]. A long existing open
problem in Finsler geometry is

Is there any Landsberg metric which is not a Berwald metric?

D. Bao [2] named the Landsberg metric that are not Berwald metric the unicorns. Z. Shen [12] has proved that a regular (α, β) -metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, on a manifold M of dimension n $(n \geq 3)$ is a Landsberg metric if and only if F is a Berwald metric, i.e. there is no unicorn in regular (α, β) -metrics on the manifold M of dimension $n \geq 3$. On the other hand, Z. Shen and G. S. Asanov (see [1] and [11]) have constructed almost regular (α, β) -metrics which are Landsberg metrics but not Berwald metrics.

A Finsler metric F is called weak Landsberg metric if the mean Landsberg curvature $J = J_k dx^k$ vanishes, where $J_k := g^{ij} L_{ijk}$. It is clear that every Landsberg metric is a weak Landsberg metric. In [8], B. Li and Z. Shen have studied weak Landsberg (α, β) -metrics and characterized almost regular weak Landsberg (α, β) -metrics on an n-dimensional manifold M $(n \ge 3)$. They have also shown that [8] there exist almost regular weak Landsberg metrics which are not Landsberg metrics in dimension greater than two. At this juncture we have the following quetion: Is there a regular weak Landsberg metric that is Berwald metric?

The weak Landsberg metric that are not Berwald metric are called generalized unicorns.

In this paper, we mainly study the generalized unicorns problem for regular (α, β) -metrics. The main findings of this paper lies in Theorem 4.1 and Theorem 5.3. One can easily prove the following theorem:

Theorem 1.1. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a regular (α, β) -metric on an n-dimensional manifold M $(n \geq 3)$, where α is a Riemannian metric and β is a 1-form on M. If $\phi = \phi(s)$ is a polynomial in s, then F is a weak Landsberg metric if and only if F is a Berwald metric.

Theorem 1.1 is the generalization of the main theorem on unicorns problem for regular (α, β) -metrics given in [11]. It also gives a negative answer for the generalized unicorns problem on regular (α, β) -metrics in the case of the dimension $(n \ge 3)$.

Theorem 1.2. Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a regular (α, β) -metric of non-Randers type on an n-dimensional manifold M $(n \geq 3)$, where α is a Riemannian metric and β is a 1-form on M. If $\phi(s) = 1 + s + s^2 + s^3 + s^4 + ... + s^m$, $m \geq 2$, is a polynomial in s, then F is of relatively isotropic mean Landsberg curvature, J + c(x)FI = 0, if and only if it is a Berwald metric.

2. Preliminaries

A Finsler manifold (M, F) is a C^{∞} - manifold M equipped with a Finsler metric which is a continuous function $F:TM\to [0,\infty)$ with the following properties:

1.
$$F(x, y)$$
 is C^{∞} on $TM \setminus \{0\}$. (Smoothness)

- 2. $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$. (Positive Homogeneity)
- 3. The fundamental tensor $g_{ij}(x,y)$ is positive definite at all $(x, y) \in TM \setminus \{0\}$, where

$$g_{ij}(x,y) := \frac{1}{2} [F^2]_{y^i y^j}(x,y).$$

The wellknown examples of Finsler metrics are Minkowski metrics, Riemannian metrics, Randers metric, Kropina metric, Matsumoto metric, square metric. The fundamental tensor is express as

$$g_y := g_{ij}(x, y) dx^i \otimes dx^j,$$

where $g_{ij} := \frac{1}{2} [F^2]_{y^i y^j}$.

The Cartan tensor is defined as

$$C_{ijk} := \frac{1}{4} [F^2]_{y^i y^j y^k} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}, \quad I_i := g^{jk} C_{ijk},$$

where $(g^{ij}) = (g_{ij})^{-1}$. We define $C := C_{ijk}dx^i \otimes dx^j \otimes dx^k$, and $I := I_i(x,y)dx^i$, which are called Cartan torsion and the mean Cartan torsion. The Cartan torsion C and the mean Cartan torsion I both characterize the Riemannian metrics among Finsler metrics. A C^{∞} - curve $\sigma = \sigma(t)$ in a Finsler manifold (M, F) is called a geodesic if and only if it satisfies the following differential equation:

$$\ddot{\sigma}^i + 2G^i(\sigma(t), \ddot{\sigma}(t)) = 0,$$

where $G^i = G^i(x, y)$ are functions on TM defined by

$$G^{i} := \frac{1}{4}g^{il} \left\{ [F^{2}]_{x^{k}y^{l}} y^{k} - [F^{2}]_{x^{l}} \right\}.$$

 ${\cal G}^i$ are called the spray coefficients of F.

Let $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ be a Riemannian metric and $\beta = b_i(x)y^i$, a 1-form on an n-dimensional manifold M. An (α, β) -metric is a Finsler metric express as

$$F = \alpha \phi(s), \ s = \frac{\beta}{\alpha},$$

where $\phi = \phi(s)$ is a continuous differential function on an open interval $(-b_0, b_0)$, satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \qquad |s| \le b < b_0, \tag{1}$$

where β satisfies $\parallel \beta_x \parallel_{\alpha} < b_0$, (or $\parallel \beta_x \parallel_{\alpha} \le b_0$,) for any $x \in M$. Such metrics are called regular (or almost regular) (α, β) -metrics ([9]).

Let G^i and G^i_{α} denote the spray coefficients of F and α respectively, given by ([11], [15])

$$G^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} + \Theta \{-2\alpha Q s_{0} + r_{00}\} \left\{ \frac{y^{i}}{\alpha} + \frac{Q'}{Q - sQ'} b^{i} \right\}, \tag{2}$$

where

$$Q := \frac{\phi'}{\phi - s\phi'},$$

$$\Theta := \frac{Q - sQ'}{2[1 + sQ + (b^2 - s^2)Q']},$$

$$r_{ij} := \frac{1}{2}(b_{i|j} + b_{j|i}), \quad s_{ij} := \frac{1}{2}(b_{i|j} - b_{j|i}),$$
 (3)

$$s_j^i := a^{im} s_{mj}, \quad r_j := b^m r_{mj}, \quad s_j := b_m s_j^m = b^m s_{mj},$$
 (4)

$$r_{00} := r_{ij} y^i y^j, \quad s_0^i := s_j^i y^j.$$

Here "|" denotes the covariant derivative with respect to Levi-Civita Connection of α .

A Finsler metric F on a manifold M is called a Berwald metric if in any standard local coordinate system (x^i, y^i) in TM_0 , the Christoffel symbol $\Gamma^i_{jk} = \Gamma^i_{jk}(x)$ are functions of $x \in M$ only, in which case, $G^i := \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k$ are quadratic in $y = y^i \frac{\partial}{\partial x^i}|_x$. If F is a Berwald metric, the space (M, F) is called the Berwald space. It is wellknown that every Riemannian and locally Minkowskian metric are Berwald metric, i.e.,

$$\{Riemannian\}\ and\ \{locally\ Minkowskian\}\subset \{Berwald\}.$$

The landsberg curvature is defined by $L := L_{ijk} dx^i \otimes dx^j \otimes dx^k$. A Finsler metric F is called the Landsberg metric if Landsberg curvature L vanishes, i.e. L=0. Further, every Berwald metric is Landsberg metric but converse is not true, i.e.,

$$\{Berwald\ metrics\} \subset \{Landsberg\ metrics\}$$

but

$$\{Landsberg\ metrics\} \subseteq \{Berwald\ metrics\}$$

always. There is a weaker non-Riemannian quantity than the Landsberg curvature L in Finsler geometry, $J = J_k dx^k$, where

$$J_k := g^{ij} L_{ijk},$$

where $(g_{ij})^{-1} = (g^{ij})$. More generally, we have the following

$$C \longrightarrow I: I_i = g^{jk}c_{ijk}$$

$$\downarrow \qquad \qquad \downarrow$$

$$L: L_{ijk} := C_{ijk|m}y^m \longrightarrow J: J_i := g^{jk}L_{ijk} = I_{i|m}y^m$$

C : Cartan torsion

I: mean Cartan torsion

L: Landsberg curvature J: mean Landsberg curvature.

Facts: F is Riemannian $\Leftrightarrow C = 0 \Leftrightarrow I = 0$.

A Finsler metric F is called the weak Landsberg metric if its mean Landsberg curvature J vanishes, i.e., J = 0. A Finsler metric F is said to be of relatively isotropic weak Landsberg curvature if F satisfies J + cFI = 0, where c = c(x) is a scalar function, I is mean Cartan torsion. Clearly,

 $\{Landsberg\ metrics\} \subset \{weak\ Landsberg\ metrics\} \subset \{Finsler\ metric\ satisfying\ J+cFI=0\}.$

Questions:

- 1. Is there a weak Landsberg metric which is not a Landsberg metric?
- 2. Is there a regular weak Landsberg metric that is Berwald metric?

The weak Landsberg metric that are not Berwald metric are called generalized unicorns.

By (2), it is easy to see that if β is parallel with respect to α , which is equivalent to $r_{ij} = s_{ij} = 0$, then $G^i = G^i_{\alpha}$. In this case, F is a Berwald metric.

Lemma 2.1. For an (α, β) -metric $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, $b = \|\beta_x\|_{\alpha}$, is a constant if and only if $r_i + s_i = 0$.

We study the generalized unicorns problem for regular (α, β) -metrics. Now, we write some lemmas to explain it.

3. Some Important lemmas

Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a regular (α, β) -metric on a manifold M of dimension n $(n \ge 3)$. For our aim, we need the following lemmas about the (α, β) -metrics of

weak Landsberg type.

Lemma 3.1. (See [8, 13]) Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be an (α, β) -metric on a manifold M of dimension n $(n \geq 3)$, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M. Then F is a weak Landsberg metric, i.e., J = 0 if and only if β satisfies

$$s_{ij} = 0, (5)$$

$$r_{ij} = k(b^2 a_{ij} - b_i b_j) + e b_i b_j, \tag{6}$$

where k = k(x) and e = e(x) are scalar functions on M and $\phi = \phi(s)$ satisfies the following ODE:

$$\psi_1 k + e s \psi_3 = 0, \tag{7}$$

where

$$\psi_1 := \sqrt{b^2 - s^2} \Delta^{1/2} \left[\frac{\sqrt{b^2 - s^2} \Phi}{\Delta^{\frac{3}{2}}} \right]',$$

$$\psi_2 := 2(n+1)(Q - sQ') + 3\frac{\Phi}{\Delta},$$

$$\psi_3 := \frac{s}{b^2 - s^2} \psi_1 + \frac{b^2}{b^2 - s^2} \psi_2,$$

where

$$\Phi := -(n\Delta + 1 + sQ)(Q - sQ') - (b^2 - s^2)(1 + sQ)Q'',$$

$$\Delta := 1 + sQ + (b^2 - s^2)Q'.$$

Using the lemma 3.1, we can prove the following lemma.

Lemma 3.2. (See [4]) Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a non-Riemannian (α, β) -metric on a manifold M of dimension $n \ (n \geq 3)$. If F is a weak Landsberg metric, i.e., J = 0 and b is a constant on M, then F is a Berwald metric.

Proof. By the assumptions that b is a constant and F is a non-Riemannian $(\alpha,$

 β)-metric, we find that $b \neq 0$. Further, by lemma 2.1, we have $r_j + s_j = 0$. Then by (4) and (5), we have

$$r_j = 0. (8)$$

Equation (6), contracting by b^i yields

$$r_j = eb^2b_j. (9)$$

From (8) and (9), we get

$$eb_j = 0. (10)$$

Contracting this equation by b^j , we have $eb^2 = 0$, that implies e = 0 by $b \neq 0$, putting e = 0 in (7) yields

$$k\psi_1 = 0. (11)$$

If $\psi_1 = 0$, then by the definition of ψ_1 , we get $\left[\frac{\sqrt{b^2 - s^2} \phi}{\Delta^{\frac{3}{2}}}\right]' = 0$. After solving this equation, we find that

$$\Lambda(s) := \frac{\sqrt{b^2 - s^2}\Phi}{\Delta^{\frac{3}{2}}}$$

is a constant for $|s| \le b < b_0$. Letting s = b yields $\Lambda(s) = 0$, which implies that $\phi = 0$. By Proposition 2.2 in [13], we know that F is a Riemannian metric, which is a contradiction.

Therefore, we get k = 0 by (11), putting k = e = 0 into (6), we get

$$r_{ij} = 0. (12)$$

By (5) and (12), we see that β is a parallel with respect to α , which implies that F is a Berwald metric.

Lemma 3.3. (See [4]) Let EQ denote the numerator of left of (7), then (7) holds if and only if

$$EQ = 0, (13)$$

holds and EQ can be expressed as below:

$$EQ = B_0 + b^2 B_2 + b^4 B_4 + b^6 B_6, (14)$$

```
where
                               b := \parallel \beta_x \parallel_{\alpha}
                               B_0 := b_{01}s + b_{02}s^2 + b_{03}s^3 + b_{04}s^4 + b_{05}s^5 + b_{06}s^6 + b_{07}s^7 + b_{08}s^8
                               B_2 := b_{20} + b_{21}s + b_{22}s^2 + b_{23}s^3 + b_{24}s^4 + b_{25}s^5 + b_{26}s^6.
                               B_4 := b_{40} + b_{41}s + b_{42}s^2 + b_{43}s^3 + b_{44}s^4,
                               B_6 := b_{60} + b_{61}s + b_{62}s^2,
 and
 b_{01} := 2(n+1)\phi'\phi^5(e-k),
 b_{02} := (n+1)\phi^4(2\phi''\phi + 9\phi'^2)(k-e),
b_{03} := 2\phi^3 [(n+1)\phi\phi'\phi'' + 8(n+1)\phi'^3 - (n+4)\phi^2\phi'''](e-k),
b_{04} := \left[2\bar{\phi}^{(4)}\phi^3 - (7n+24)\phi^2\phi'\phi''' + (n+25)\phi^2\phi''^2 - 8(n+1)\phi''\phi'^2\phi + 14(n+1)\phi''\phi'^2\phi' + 14(n+1)\phi''\phi''^2\phi' + 14(n+1)\phi''\phi'' + 14(n+1)\phi'' + 14(n
1)\phi'^4 \phi^2(k-e),
b_{05} := \phi [3(n-4)\phi^3\phi''\phi''' - 3(3n+8)\phi^2\phi'^2\phi''' - 16(1+n)\phi\phi'^3\phi''
                               +(52+7n)\phi^2\phi'\phi''^2+6(n+1)\phi'^5+6\phi^3\phi'\phi^{(4)}(k-e).
b_{06} := \left[ (4 - 5n)\phi^3 \phi''^3 + 6(5 + 2n)\phi''^2 \phi'^2 \phi^2 + (1 + n)\phi'^6 + 3\phi'''^2 \phi^4 - (8 + 5n)\phi'^3 \phi^2 \phi''' \right]
                               -2\phi^{4}\phi''\phi^{(4)} + (7n - 24)\phi^{3}\phi'\phi'''\phi''' + 6\phi'^{2}\phi^{3}\phi^{(4)} - 10(n+1)\phi'^{4}\phi\phi''](k-e),
b_{07} := \left[ 2(n+1)\phi^{'5}\phi^{''} - (7n+4)\phi^{'3}\phi^{''2}\phi + 4\phi^{'}\phi^{3}\phi^{''}\phi^{(4)} - 2\phi^{'3}\phi^{2}\phi^{(4)} - 6\phi^{'}\phi^{'''2}\phi^{3} \right]
                               +4(2n-1)\phi^2\phi'\phi''^3+(n-2)\phi^3\phi''^2\phi'''+n\phi\phi'^4\phi'''+(12-5n)\phi\phi'^2\phi''\phi'''](k-e),
b_{08} := \left[ (n+1)\phi'^4 \phi''^2 + 2(n-2)\phi^2 \phi''^4 + n\phi\phi'^3 \phi'' \phi''' - 3n\phi\phi'^2 \phi''^3 \right]
                             +3\phi^2{\phi'}^2{\phi'''}^2 - 2\phi^2{\phi'}^2{\phi''}^2{\phi''}^4 + (2-n)\phi^2{\phi'}{\phi''}^2{\phi'''}(k-e),
b_{20} := -(n+1)k\phi^{\prime 2}\phi^4.
b_{21} := 2\phi^{3} \left[ 3e\phi^{2}\phi''' - (4+n)k\phi^{2}\phi''' + 2(n+1)(e-k)\phi\phi'\phi'' + 2(n+1)k\phi'^{3} \right],
b_{22} := -\phi^2 \{ 2(2k - e)\phi^3\phi^{(4)} + [(n+31)k + 4e(n-5)]\phi''^2\phi^2 + 6k(n+1)\phi'^4 \}
                               +2(n+1)(7e-8k)\phi''\phi'^2\phi'+[(18+n)e-8(n+3)k]\phi'\phi^2\phi'''\},
b_{23} := \phi \{3(2-n)e\phi^3\phi''\phi''' + [3e(n+6) - 12(n+2)k]\phi'^2\phi^2\phi''' + 4(n+1)k\phi'^5 + 6(n-1)k\phi'' + (n+1)k\phi'^5 + 6(n-1)k\phi'' + (n+1)k\phi'' + (n+1)k\phi' + (n+1)k\phi'' + (n+1)k\phi'' + (n+1)k\phi'' + (n+1)
4)k\phi''\phi^3\phi''
                               +[6(2n+11)k+e(n-44)]\phi^2\phi'\phi''^2+6(n+1)(3e-4k)\phi\phi'^3\phi''+6(2k-e)\phi'\phi^3\phi^{(4)}\},
b_{24} := \left[4e(2n-3) + 3(16-5n)k\right]\phi^{3}\phi'\phi''' + 6(e-2k)\phi'^{2}\phi^{3}\phi^{(4)} - k(1+n)\phi'^{6} + 2(n+1)(8n-5e)\phi'^{4}\phi\phi'' + 6[e(2n+5) - (4n+7)k]\phi'^{2}\phi''^{2}\phi^{2} + [8k(n+1) - 3e(n+1)(8n+1) + 6(n+1)(8n+1)(8n+1) + 6(n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8n+1)(8
2)]\phi^{'3}\phi^{2}\phi^{'''} + 2(3k - 2e)\phi^{4}\phi^{''}\phi^{(4)} + [2(5n - 1)k - 3(n + 6)e]\phi^{3}\phi^{''3} - 3(2e - 3k)\phi^{'''2}
 b_{25} := 2(e-2k)(n+1)\phi^{'5}\phi^{''} + [12k(n-2) + e(6-7n)]\phi^{'2}\phi^2\phi^{''}\phi^{'''} + n(16k-11e)\phi^{'3}\phi^{''2}\phi
                               +2(2k-e)\phi'^3\phi^{(4)}\phi^2+2(5k-4e)\phi'^3\phi''^2\phi+6(3k-2e)\phi'\phi''^2\phi^3+4(2e-3k)\phi'\phi^3\phi''\phi^{(4)}
                               +n(e-2k)\phi\phi'''\phi'^4+[2(9e+k)+n(9e-19k)]\phi'\phi^2\phi''^3+(2-n)(3k-2e)\phi^3\phi'''\phi''^2
b_{26} := \{ 2(n-2)\phi^2 \phi''^4 + (n+1)\phi'^4 \phi''^2 - 3n\phi'^2 \phi''^3 \phi + n\phi\phi'' \phi''' \phi''^3 + 3\phi'^2 \phi^2 \phi'''^2 - 2\phi'^2 \phi^2 \phi'' \phi^{(4)} + (2-n)\phi^2 \phi' \phi''^2 \phi''' \} (2e-3k),
b_{40} := k\phi^3 [6\phi\phi''^2 - n\phi\phi'\phi''' + 2\phi^2\phi^{(4)} - 2(n+1)\phi'^2\phi''].
```

$$b_{41} := \phi^2 \{3[(4-n)k+2e]\phi^2\phi''\phi''' + [2(n+1)e-k(14+5n)]\phi\phi'\phi''^2 - 6k\phi^2\phi'\phi^{(4)} + 3nk\phi\phi'^2\phi''' + 6k(n+1)\phi'^3\phi''\},$$

$$b_{42} := -\phi \{2(3k-e)\phi^3\phi''\phi^{(4)} + 3(e-3k)\phi^3\phi'''^2 - 6k\phi'^2\phi^2\phi^{(4)} + [(5n+8)k+2(n-1)e]\phi^2\phi''^3 + 3nk\phi'^3\phi\phi''' + (5e-13k)(n+1)\phi\phi'^2\phi''^2 + 6k(n+1)\phi'^4\phi'' + [3(8-3n)k+(12+n)e]\phi^2\phi'\phi''^3\},$$

$$b_{43} := \{[2k(4+7n)-e(n+22)]\phi^2\phi'\phi''^3 + (n-2)(3k-e)\phi^3\phi''^2\phi''' + [4e(n+1)-k(8+11n)]\phi'^3\phi''^2\phi + 6(e-3k)\phi'\phi'''^2\phi^3 + 4(3k-e)\phi'\phi^3\phi''\phi^{(4)} + 2k(n+1)\phi'^5\phi'' - 2k\phi'^3\phi^2\phi^{(4)} + [2e(n+3) + 3k(4-3n)]\phi'^2\phi^2\phi''\phi''' + nk\phi\phi'^4\phi'''\},$$

$$b_{44} := \{2(n+2)\phi^2\phi''^4 - 2\phi'^2\phi^2\phi''\phi^{(4)} + n\phi\phi'^3\phi''\phi''' + (2-n)\phi'\phi^2\phi''^2\phi''' + (n+1)\phi'^4\phi''^2 - 3n\phi'^2\phi''^3\phi + 3\phi'^2\phi'''\phi''' + (1+n)\phi''^2\phi'^2],$$

$$b_{60} := -k\phi^2[3\phi^2\phi'''^2 - 2\phi^2\phi''\phi^{(4)} - 6\phi\phi''^3 + n\phi\phi'\phi'''\phi''' + (1+n)\phi''^2\phi'^2],$$

$$b_{61} := k\phi\{-4\phi^2\phi'\phi''\phi^{(4)} + 6\phi^2\phi'''^2\phi'' + (2-n)\phi^2\phi''^2\phi''' - 3(2+n)\phi\phi'\phi''^3 + 2n\phi\phi'^2\phi''' + (2-n)\phi'\phi^2\phi''^2\phi''' + (n+1)\phi'^4\phi''^2 + (2-n)\phi'\phi^2\phi''^2\phi''' + n\phi\phi^3\phi''\phi''' \}.$$

4. Special unicorns related with a polynomial

Assume that $\phi = \phi(s)$ is a polynomial which is expressed as below:

$$\phi = 1 + s + s^2 + s^3. \tag{15}$$

Lemma 4.1. Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a non-Riemannian weak Landsberg (α, β) -metric on a manifold M of dimension n $(n \ge 3)$ and $\phi = \phi(s) = 1 + s + s^2 + s^3$, a polynomial in s. Then b is a nonzero constant on M. In this case, F is a Berwald metric.

Proof. Firstly, let F be a non-Riemannian (α, β) -metric, i.e., any point $x \in M$ satisfying b(x) = 0 must be a isolated point on M. Then, if a continuous function $\mu = \mu(x)$ satisfies $b(x)\mu(x) = 0$ on M, then $\mu(x) \equiv 0$ on M by the continuity of $\mu = \mu(x)$.

Now, by lemma 3.1 and 3.3, $F = \alpha \phi(s)$, $s = \beta/\alpha$, is a weak Landsberg metric if and only if ϕ satisfies (13) and β satisfies (5) and (6). Consider following three cases:

Case A. When $deg(\phi) = 1$, i.e. $\phi = 1 + s$. In this case, the metric F becomes Randers metric.

Putting $\phi(s) = 1 + s$ in equation (13) and by using the Maple program, we have

$$a_2s^2 + a_1s + a_0 = 0, (16)$$

where

$$a_0 := -(n+1)kb^2$$

$$a_1 := 2(n+1)(e-k),$$

$$a_2 := (n+1)(e-k).$$

Note that a_0, a_1, a_2 are independent of s, so (16) is equivalent to $a_0 = a_1 = a_2 = 0$. It is easy to see that k = e = 0, from (6), we eliminate $r_{ij} = 0$. By (5) and $r_{ij} = 0$, we obtain that β is parallel with respect to α . In this case, b is a constant and F is a Berwald metric, i.e., Randers metric becomes Berwald metric.

Case B. When $deg(\phi) = 2$, i.e., $\phi(s) = 1 + s + s^2$. In this case, metric F reduces to first approximate Matsumoto metric, i.e., $F = \alpha + \beta + \frac{\beta^2}{\alpha}$.

Putting $\phi(s) = 1 + s + s^2$ in equation (13) and using the Maple program, we get

$$\eta_i s^i = 0, \quad 0 \le i \le 11,$$
(17)

where $\eta_0, \eta_1, ..., \eta_{11}$ are all independent of s. Particularly, we have

$$\eta_0 = -b^2 k(1+2b^2)(2b^2(n-11) + (n+1)), \tag{18}$$

$$\eta_2 = 8(19 - 14n)kb^6 + 4b^4[(49 + n)e - (14 + 23n)k]
+4b^2[(25 + n)e - 5(n + 7)k] + (n + 1)(e - k),$$
(19)

$$\eta_{10} = 3(k - e)(41n - 67) + 24b^{2}(2e + k)(2 - n), \tag{20}$$

$$\eta_{11} = 18(n-1)(k-e). \tag{21}$$

From $\eta_{11} = 0$, we get k = e. From equation (20), we get

$$\eta_{10} = 72(2-n)b^2e,$$

If $\eta_{10} = 0$, then k = e = 0. Plugging $\phi = 1 + s + s^2$ into (1) and letting s = 0 yields $1 + 2b^2 > 0$. Thus $\eta_0 = 0$ implies that k = 0 by equation (18). Putting k = 0 into equation (19) yields

$$\eta_2 = [4b^4(49+n) + 4b^2(25+n) + (n+1)]e.$$

By $\eta_2 = 0$, we have e = 0.

Similar to proof of case A, we have that b is a constant and F is a Berwald metric.

Thus, every first approximate Matsumoto metric reduces to a Berwald metric.

Case C. When $deg(\phi) = 3$, i.e., $\phi = 1 + s + s^2 + s^3$. In this case, metric F reduces to second approximate Matsumoto metric, i.e., $F = \alpha + \beta + \frac{\beta^2}{\alpha} + \frac{\beta^3}{\alpha^2}$.

Putting $\phi(s) = 1 + s + s^2 + s^3$ in equation (13) and using the Maple program, we get

$$f_i s^i = 0, \quad 0 \le i \le 17,$$
 (22)

where $f_0, f_1, ..., f_{17}$ are all independent of s. Particularly, we have

$$f_{13} = 2(kf_{13k} + ef_{13e}), (23)$$

$$f_{14} = k f_{14k} + e f_{14e}, (24)$$

$$f_{15} = -2(kf_{15k} + ef_{15e}), (25)$$

$$f_{16} = -4(kf_{16k} + ef_{16e}), (26)$$

$$f_{17} = 192(n-1)(k-e), (27)$$

where

$$f_{13k} := 24(53n - 150)b^4 + 12(2217 - 919n)b^2 + (11294n - 16861),$$

$$f_{13e} := 48(60n - 189)b^4 + (13809 - 4846n)b^2 + (16867 - 11288n),$$

$$f_{14k} := 576(n-3)b^4 + 12(1533 - 761n)b^2 + 3(4699n - 8511),$$

$$f_{14e} := 1728(n-3)b^4 + 12b^2(2364 - 1045n) + (26557 - 14097n),$$

$$f_{15k} := (69n - 133)b^2 + (6252 - 3153n),$$

$$f_{15e} := 24(159n - 331))b^2 + (3153n - 6252),$$

$$f_{16k}: 192(n-2)b^2 + (543 - 366n),$$

$$f_{16e} := 576(n-2)b^2 + (366n - 543).$$

By equation (27), $f_{17} = 0$, means that (k - e) = 0, i.e., k = e. Putting k = e in equation (26), we get

$$f_{16} = -3072(n-2)b^2e.$$

From the equation $f_{16} = 0$, we get e = 0. Thus we have k = e = 0.

Similar to proof of case A, we have that b is a constant and F is a Berwald metric. Thus, in this case, every second approximate Matsumoto metric becomes a Berwald metric.

5. (α, β) -metrics with relatively isotropic weak Landsberg curvature

In this section, we study about regular (α, β) -metrics of non-Randers type with relatively isotropic mean Landsberg curvature. Here, we must mention the following lemmas:

Lemma 5.1. (See [13]) Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a regular (α, β) -metric on a manifold M of dimension n $(n \geq 3)$. Then F is of relatively isotropic mean Landsberg curvature, i.e., there exist a scalar function c = c(x) on M such that J + c(x)FI = 0, if and only if β satisfies

$$s_{ij} = 0, (28)$$

$$r_{ij} = k(b^2 a_{ij} - b_i b_j) + e b_i b_j,$$
 (29)

where k = k(x) and e = e(x) are scalar functions on M and $\phi = \phi(s)$ satisfies the following ODE:

$$\{\psi_1 k + e s \psi_3\} + c(x) \Phi(\phi - s \phi') = 0, \tag{30}$$

where Φ , ψ_1 , ψ_3 are defined in section 3.

Lemma 5.2. (See [5]) Let PPE denote the numerator of the left of equation (30), then (30) holds if and only if

$$PPE = 0, (31)$$

and PPE can be expressed as

$$PPE := EQ + PE, \tag{32}$$

where EQ is defined by equation (14) and PE can be written as

$$PE := (b^2 - s^2)\phi(\phi - s\phi')\phi''' + \{(n-2)(s^2 - b^2)s\phi\phi''^2 + (n+1)(\phi - s\phi')[(b^2 - s^2)\phi' - s\phi]\phi'' + (n+1)(\phi - s\phi')^2\phi\}.$$
 We prove the following theorem:

Theorem 5.3. Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a regular (α, β) -metric of non-Randers type on an n-dimensional manifold M $(n \ge 3)$, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M. If $\phi(s) = 1 + s + s^2 + s^3 + s^4 + ... + s^m$,

 $m \geq 2$, is a polynomial in s, then F is of relatively isotropic mean Landsberg curvature, J + c(x)FI = 0, if and only if it is a Berwald metric.

Proof. Firstly, let F is of relatively isotropic mean Landsberg curvature. By (31) and (32), lemma 5.1 and lemma 5.2 holds, Express $\phi(s)$ as below:

$$\phi = 1 + s + s^2 + s^3 + s^4 + \dots + s^m, \quad m \ge 2.$$
(33)

From (33), (32) and (31), we have

$$v_i s^i = 0, \quad 0 \le i \le r, \tag{34}$$

where $v_0, v_1, ..., v_r$ are independent of s.

Now, using the Maple program, we get the following results in three steps.

Step 1. When m = 2, $\phi = 1 + s + s^2$, we get

$$v_r = -216nc$$

and r = 13. In this case, because $v_r = 0$, so c must be zero.

Step 2. When m = 3, $\phi = 1 + s + s^2 + s^3$, we get

$$v_r = -12288cn,$$

and r = 20. In this case, because $v_r = 0$, so c must be zero.

Step 3. When $m \geq 4$, we have

$$v_r = -4nm(m+1)^3(m-1)^4c,$$

and

$$r = 7m - 1$$
.

By the same reason as above, c must also be zero. Therefore we conclude that, if $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ is of relatively isotropic mean Landsberg curvature, then F is a weak Landsberg metric, which implies that F is Berwald metric. In other words, if Randers metric is of relatively isotopic mean Landsberg curvature then it is a weak Landsberg metric and consequently becomes a Berwald metric. Similar, results hold for first and second approximate Matsumoto metric.

Acknowledgement: First author is very much thankful to the Central University of Punjab, Bathinda for providing financial assistance to this research work via the RSM Grant (CUPB/CC/17/369).

References

- [1] G. S. Asanov, Finsleroid-Finsler space and spray coefficients, preprint, arXiv : math/ 0604526, 2006.
- [2] D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, Advanced Studies in Pure Mathematics, Math. Soc. Japan, 48(2007), 19-71.
- [3] X. Cheng and Z. Shen, Finsler geometry-An approach via Randers spaces, Springer Science, (2011).
- [4] X. Cheng and Y. Zou, The generalized unicorn problem on (α, β) -metric, J. math. analysis and applications, **414** (2014), 574-589.
- [5] X. Cheng and Y. Zou, The generalized unicorn problem in Finsler geometry, Differential Geometry Dynamical Systems, 17 (2015), 38-48.
- [6] S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, (2005).
- [7] G. Landsberg, *Uber die Totalkrmmung*, jahresbericht. deutsch. math.-verein, **16** (1907), 36-46.
- [8] B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A, **50** (4) (2007), 573-589.
- [9] M. Matsumoto, On C-reducible Finsler spaces, Tensor (N.S.), 24 (1972), 29-37.
- [10] X.Mo, An introdution to Finsler geometry, World Scientific, (2006).
- [11] G. Shanker and S. A. Baby, On the projective flatness of a Finsler space with infinite series (α, β) -metric, South East Asian J. of Math. and Math. Sci., 17 (1) (2015), 17-24.
- [12] Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canad. J. Math. **61** (6) (2009), 1357-1374.
- [13] Z. I. Szabo, All regular Landsberg metrics are Berwald, Ann. Glob. Anal. Geom., 34 (2008), 381-386.
- [14] H. Wang, M. Wang and X. Cheng, (α, β) -metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen, **72** (2008), 475-485.
- [15] R. Yadav and G. Shanker, On some projectively flat (α, β) -metrics, Gulf Journal of Mathematics, 1 (2013), 72-77.